Home / 3D Printer Hardware / Made in Space Demonstrates ESAMM System for 3D Printing in Vacuum of Space

Made in Space Demonstrates ESAMM System for 3D Printing in Vacuum of Space

With the participation of NASA Associate Administrator for Space Technology Steve Jurczyk, Made in Space showed the latest test results on the Archinaut project and gave  a demonstration of the Extended Structure Additive Manufacturing Machine (ESAMM), with a tour of Made In Space’s robotics room.

ESAMM is a manufacturing method which incorporates Archinaut’s additive manufacturing system with a robotic manipulator to create objects in free-space and install both additively manufactured and pre-fabricated components. ESAMM successfully printed a beam, 33 inches in length, in simulated space-like conditions. This is the first-ever build of a beam in free-space in a simulated space environment.

Made In Space is one of three companies selected to develop robotic in-space manufacturing and assembly of spacecraft and space structures through NASA’s Space Technology Mission Directorate (STMD) “Utilizing Public-Private Partnerships to Advance Tipping Point Technologies” solicitation.

Orbital ATK of Dulles, Virginia, and Space Systems Loral of Palo Alto, California, were also selected under the solicitation to mature technologies beyond their “tipping point” with the goal of enabling private industry to develop and qualify them for market, and delivering technologies and capabilities needed for future NASA missions and commercial applications.

Made In Space is located in the NASA Research Park at NASA’s Ames Research Center in Silicon Valley. Made In Space’s Archinaut project is being developed for STMD and managed by the Technology Demonstration Missions Program. STMD is responsible for developing the crosscutting, pioneering, new technologies and capabilities needed by the agency to achieve its current and future space exploration missions.

Archinaut, a NASA Technology Demonstration Mission (TDM) project developing cutting-edge technology to build and assemble complex hardware and supersized structures on demand in space, achieved an unprecedented milestone this summer.

“To our knowledge, this is the first time additive manufacturing has been successfully tested on such a large scale in the vacuum and temperature conditions of space,” said Eric Joyce, Archinaut project manager for Made In Space Inc. of Mountain View, California, which spearheads the project for NASA.

The Archinaut test series, using Made In Space’s innovative Extended Structure Additive Manufacturing Machine, was conducted in a vacuum chamber in the Engineering Evaluation Laboratory at NASA’s Ames Research Center in Moffett Field, California.

The team conducted hundreds of hours of tests to complete the series. Working around the clock for much of June, they printed large beam segments — similar to those used to construct a variety of space structures — and subjected printing equipment and printed hardware alike to the pressures, temperatures and other rigors of deep space.

“This was a big step for us,” Joyce said. “It advances the technology — and gives us real confidence the hardware will do the job in space that it does here on the ground, enabling us to print sturdy, reliable structures of unlimited size. It was a history-making test.”

Archinaut is one of three “tipping point” projects NASA is funding in pursuit of groundbreaking new solutions under the umbrella of TDM’s In-space Robotic Manufacturing and Assembly (IRMA) project, sponsored by NASA’s Space Technology Mission Directorate. These projects help NASA determine whether the technology has been sufficiently matured to pursue flight demonstrations or for infusion into future exploration missions.

“We couldn’t be more pleased about Archinaut’s successful demonstration,” said Trudy Kortes, TDM program executive at NASA Headquarters in Washington. “In-space robotic manufacturing and assembly technologies are destined to be key building blocks for a thriving space infrastructure, and will enable robust future exploration missions across the solar system. Milestones such as this one are crucial steps toward that future.”

Building in space to curtail cargo launches

Better known as 3-D printing, additive manufacturing could offer solutions for quickly and cheaply mounting new space infrastructure missions to Earth orbit and beyond. Combined with robotic manufacturing and assembly, the technology could help NASA and its commercial partners remotely construct new habitats and hardware in space — without the costs or risks associated with flying heavy materials or structures via rocket from Earth to space.

Just as crucially, building to order in space frees future missions from the limitations of conventional spaceflight.

“Until now, everything we have sent to space has been constrained by the volume available on various launch vehicles,” Joyce said. “That fundamentally limits the size and geometry of anything we send up. Instead of launching a rocket with a complete vehicle crammed on board, what if we just launch feedstock — raw material — and do all manufacturing and assembly in space?” he added. “All the constraints go away, and rockets become more efficient at delivering cargo to space.”

The logical next step — following another test series in early 2018 to further hone the capabilities of the ESAMM prototype and refine Archinaut’s robotic manipulator — is full-scale, in-space flight demonstration. The team is already pondering its ideal project for that potential future mission: a massive communications satellite dish, or perhaps a supersized truss designed to robotically deploy solar panels? Time will tell, Joyce said.

Ultimately, Archinaut could evolve into a build-to-order space platform. Vehicles or satellites could dock to enable construction, assembly and integration of whatever space-optimized hardware or systems they require, Joyce suggested — permanently rewriting the way humans travel to space.

“This technology is absolutely transformative,” Joyce said. “Archinaut has the potential to dramatically advance discovery in space, reducing the time and money spent launching hardware and equipment and putting the focus on the human explorers who will use that made-in-space equipment to explore the cosmos.”

The Archinaut team includes lead subcontractor Northrop Grumman Corp. of Falls Church, Virginia; Oceaneering Space Systems of Houston, Texas; and Ames Research Center. TDM projects such as Archinaut mature groundbreaking technologies for infusion into government and commercial programs, dramatically extending human capabilities and opportunities in space. NASA’s Marshall Space Flight Center in Huntsville, Alabama, leads the TDM program for the agency.

Did you know that AM for space industry applications is expected to reach $5.5 billion within the next 10 years and that the space industry is expected to be world’s next trillion dollar industry? Would you like to know more about additive manufacturing for – and in – space? Check out our latest industry report:

Additive Manufacturing for Space Industry Applications: from Earth to Orbit

 

 

About 3D Printing Media Network

Check Also

Stratasys Records Stable Revenues in Q2, Reiterates Guidance for Full Year

  3D Printing market leader Stratasys reported that revenues for its second quarter of FY …

Leave a Reply

Your email address will not be published.