Home / 3D Printing Processes / Nuclear Threat Initiative (NTI) Analyzes Risks of 3D Printing for Missile Proliferation

Nuclear Threat Initiative (NTI) Analyzes Risks of 3D Printing for Missile Proliferation

Nuclear Threat Initiative, an association that designs innovative threat-reduction projects and works with governments, scientists, technicians and educators to raise awareness and advocate solutions, just released a study conducted by the James Martin Center for Nonproliferation Studies at the Middlebury Institute of International Studies on the risks that additive manufacturing/3D printing could represent for uncontrolled global missile proliferation.

Not that governments and rogue governments seem to need any real help with weapons development and contruction, however there is no doubt that a metal 3D printer could enable production of more advanced weapons even in parts of the world that cannot currently access advanced manufacturing, as detailed in this very accurate and eloquent 2015 paper titled “3D Printing the Bomb? The Nuclear Nonproliferation Challenge”, which the new study is partially based on.

Following North Korea’s December 2012 test of its Unha-3 satellite launch vehicle, the South Korean navy recovered from the Yellow Sea a portion of the rocket jettisoned in flight. ROK authorities and experts advising the UN Security Council’s sanctions committee subsequently analyzed the debris, to see what could be learned about North Korea’s rocket production know-how. The effort confirmed North Korea manufactured the rocket’s key components domestically, importing only common, off-the-shelf items.

The North Korean government touts its indigenous manufacturing capability, highlighting in particular, the use of computer-driven machines to cut and shape metal into specific forms. [3] These devices – referred to as Computer Numerically Controlled or CNC machine tools – have been used for decades, and are valuable for missile and aerospace programs. The frequency and variety of North Korea’s missile-related tests across 2016 – involving a solid-fueled rocket motor, submarine-launched ballistic missiles, and most recently, an Extended Range Scud missile –suggest an effort to accelerate development of these potential WMD delivery systems. To speed up these advancements, North Korea may be tempted to experiment with new production methods such as 3D printing.

The recent emergence of 3D printing as an alternate manufacturing technology could change how states evaluate the cost of embarking on or (in the case of North Korea) accelerating missile development programs. 3D printing has the potential to greatly reduce the costs and expertise requirements of these and other proliferation programs. Employed strategically, 3D printing could reduce cycle times in development of missiles and other military systems – and with the right printers and software – even reduce the number of skilled engineers needed for such programs.

Because 3D printers can produce a wide variety of three-dimensional metal or plastic objects, the potential commercial and industrial applications are vast, generating much buzz about the arrival of a new manufacturing revolution. Motivated by the potential cost and technical advantages, the U.S. National Aeronautics and Space Administration (NASA) and aerospace manufacturer Space-X are already experimenting with 3D printing in the manufacture of rocket engines. The U.S. and British Navies have been using 3D printers on aircraft carriers at sea to produce customized drones during deployments. The revolutionary implications for nonproliferation of this new manufacturing method warrant closer consideration.

Matthew Kroenig and Tristan Volpe assessed the nuclear nonproliferation dimension of this development with their article titled “3D printing the bomb?” and the topic is garnering attention among policy analysts. Much of the concern surrounds whether 3D printing represents a new way for a state-level WMD program to circumvent nonproliferation export controls by offering a convenient way to produce sensitive (export controlled) components. As the Nuclear Suppliers Group and Missile Technology Control Regime developed their guidelines in an era when subtractive manufacturing was dominant, few export controls are in place specifically focused on 3D printers. However, traditional export controls can still apply to the inputs (design file and some metal powders) and outputs (printed object) of 3D printers.

The increased availability of home-use 3D printers complicates efforts to manage the proliferation risk posed by additive manufacturing. This development converges with the ongoing growth of e-commerce marketplaces and “one-click” shipping, meaning that individual online sellers are now able to manufacture their own goods as well as sell them. Of course, the capabilities of home-use 3D printers are far from the industrial-scale additive manufacturing equipment employed by the Lockheeds, Raytheons, and GEs of the world. However, the emergence of “makerspaces” –where 3D printers and other manufacturing equipment in a central workspace can be shared via a co-op type arrangement – may bring advanced production capabilities to a neighborhood near you. Even if a “makerspace” is not close by, a design file can be sent electronically to a 3D printing services company – or perhaps the customer’s own location if he/she has a suitable 3D printer on site. The production and sale of sensitive WMD-relevant dual-use goods by these new modes is not entirely hypothetical. Researchers at King’s College London and the Center for Nonproliferation Studies have identified export-controlled dual-use goods such as pressure transducers and freeze dryers for sale on e-commerce sites such as Alibaba. As illustrated by University of California at San Diego students’ launching of a rocket with a fully 3D-printed engine, truly widespread “garage”-based production of rockets and other export controlled items may not be far away either.

This emerging scenario will require creative thinking and solutions on the part of the nonproliferation community – and in a way that does not stifle the genuine benefits 3D printing offers for economic and human welfare. Traditional export controls will still be essential, but they will have to be supplemented by nonproliferation awareness-building beyond outreach to traditional industrial actors. Moreover, the transmissibility of 3D printing design files will demand similar attention in the cyber-security domain. Otherwise, states such as North Korea will be well-positioned to tap into the 3D printing revolution, learn from it, and incorporate it into their missile production capabilities. Well-resourced terrorist organizations and arms traffickers also may be tempted to exploit 3D printing for weapons production, and, just as legitimate commercial traders at the factory/warehouse level have been joined by new entrepreneurs at the garage/living room level, proliferators’ ranks may also be augmented by new illicit supply chains supporting them.

About 3D Printing Media Network

Check Also

Human 3D Blood-Vessel-On-a-Chip Model Shows Cell Migration for Fibrotic Diseases

A team of scientists at the Wyss Institute at Harvard University and Boston University has …